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Submaximal factorizations of a Coxeter
element in complex reflection groups

Vivien Ripoll
LaCIM, UQÀM, Montréal, QC, Canada

Abstract. When W is a finite reflection group, the noncrossing partition lattice NC(W ) of type W is a very rich
combinatorial object, extending the notion of noncrossing partitions of an n-gon. A formula (for which the only
known proofs are case-by-case) expresses the number of multichains of a given length in NC(W ) as a generalized
Fuß-Catalan number, depending on the invariant degrees of W . We describe how to understand some specifications
of this formula in a case-free way, using an interpretation of the chains of NC(W ) as fibers of a “Lyashko-Looijenga
covering”. This covering is constructed from the geometry of the discriminant hypersurface of W . We deduce new
enumeration formulas for certain factorizations of a Coxeter element of W .

Résumé. Lorsque W est un groupe de réflexion fini, le treillis NC(W ) des partitions non-croisées de type W est un
objet combinatoire très riche, qui généralise la notion de partitions non-croisées d’un n-gone. Une formule (seulement
prouvée au cas par cas à l’heure actuelle) exprime le nombre de chaı̂nes de longueur donnée dans NC(W ) sous la
forme d’un nombre de Fuß-Catalan généralisé, qui dépend des degrés invariants de W . Nous décrivons une stratégie
visant à comprendre certaines spécifications de cette formule de manière uniforme, en utilisant une interprétation des
chaı̂nes de NC(W ) comme fibres d’un “revêtement de Lyashko-Looijenga”. Ce revêtement est construit à partir de
la géométrie de l’hypersurface du discriminant de W . Nous en déduisons de nouvelles formules de comptage pour
certaines factorisations d’un élément de Coxeter de W .

Keywords: complex reflection groups, generalized noncrossing partition lattice, generalized Fuss-Catalan numbers,
factorizations of a Coxeter element

1 Introduction
Let W be a well-generated irreducible complex reflection group(i). We define a partial order 4 on W ,
related to the reflection length of the elements in W (see Def. 3). The noncrossing partition lattice of type
W , denoted NC(W ), is a particular interval for this order. It is an algebraic generalization of the lattice of
noncrossing partitions of an n-gon, and it has many important combinatorial properties. One of the most
amazing ones is the following:

Proposition 1 (“Chapoton’s formula”) LetW be an irreducible, well-generated complex reflection group,
of rank n. Then, for any p ∈ N, the number of multichains w1 4 . . . 4 wp in the poset NC(W ) is equal to

Cat(N)(W ) =

n∏
i=1

di + ph

di
,

(i) The precise definitions will be given in Sect 2.
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where d1 ≤ · · · ≤ dn = h are the invariant degrees of W (defined in Sec. 2.1).

The numbers Cat(p)(W ) are called Fuß-Catalan numbers of type W . They also appear in other com-
binatorial objects related to the group W , e.g. in the context of cluster algebras of finite type.

In the real case, this formula was first observed by Chapoton in [Cha05, Prop. 9]. The proof is case-
by-case (using the classification of finite Coxeter groups), and it mainly uses results by Athanasiadis and
Reiner [Rei97, AR04]. The remaining complex cases are checked by Bessis in [Bes07] using results of
[BC06]. There is still no case-free proof of this formula, even for the simplest case where p = 1 which
gives the cardinality of NC(W ) as the generalized Catalan number

∏n
i=1(di + h)/di.

This very simple formula naturally motivates the search for a uniform proof that could shed light on the
mysterious relation between the combinatorics of NC(W ) and the invariant theory of W .

Multichains in NC(W ) are directly related to certain block factorizations of a Coxeter element c of W
(see Def. 4). In fact, Chapoton’s formula can be reformulated in terms of these factorizations.

In [Bes07], Bessis discovered that some instances of the formula (namely, the number of maximal fac-
torizations of c) can be explained through the geometry of a map, called the Lyashko-Looijenga covering
LL, constructed from the geometry of the discriminant of W .

The object of this paper is to explain how, by studying this map in more detail, we can obtain further
enumerative results, giving formulas for the number of submaximal factorizations of c.

Theorem 2 (cf. Thm. 8 and Cor. 11) Let c be a Coxeter element of W and Λ a conjugacy class of ele-
ments of reflection length 2 in NC(W ). Then:

(a) the number of block factorizations of c, constituting of n − 2 reflections and one element of length 2
and of conjugacy class Λ, is

| FACTΛ
n−1(c)| = (n− 1)! hn−1

|W |
degDΛ ,

where DΛ is a homogeneous polynomial attached to Λ, determined by the geometry of the discrimi-
nant hypersurface of W (see Sec. 4);

(b) the total number of block factorizations of c in n− 1 factors (or submaximal factorizations) is

| FACTn−1(c)| = (n− 1)! hn−1

|W |

(
(n− 1)(n− 2)

2
h+

n−1∑
i=1

di

)
.

While the first point is new, the second one is not. In fact, it is a direct consequence of Chapoton’s
formula. The main interest here is that the proof is geometric and almost(ii) case-free. The structure of the
proof is as follows:

1. we use new geometric properties of the morphism LL to prove formula (a);

2. we find a uniform way to compute
∑

Λ degDΛ, using an algebraic study of the Jacobian of LL;

3. we deduce formula (b) since | FACTn−1(c)| =
∑

Λ | FACTΛ
n−1(c)|.

(ii) We have to rely on some structural properties of LL, proved in [Bes07] case-by-case.
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Thus, even if the method used here does not seem directly generalizable to factorizations with fewer
blocks, it is a new interesting avenue towards a geometric case-free explanation of Chapoton’s formula.

Outline. In Section 2 we give some background and notations about complex reflection groups and
the noncrossing partition lattice, and we define the block factorizations of a Coxeter element. Section 3 is
devoted to the construction and properties of the Lyashko-Looijenga covering of typeW , and in particular
its relation with factorizations. In Section 4 we give the precise formulas for submaximal factorizations,
and explain the steps of the proof.

All the details of the constructions and proofs can be found in [Rip10c] and [Rip10b] (see also [Rip10a]).

2 The noncrossing partition lattice and block factorizations of a
Coxeter element

2.1 Complex reflection groups
First we recall some notations and definitions about complex reflection groups.

For V a finite dimensional complex vector space, we call a reflection(iii) of GL(V ) an automorphism r
of V of finite order and such that the invariant space Ker(r − 1) is a hyperplane of V . We call a complex
reflection group a finite subgroup of GL(V ) generated by reflections.

A simple way to construct such a group is to take a finite real reflection group (or, equivalently, a finite
Coxeter group together with its natural geometric realization) and to complexify it. There are of course
many other examples that cannot be seen in a real space. A complete classification of irreducible complex
reflection groups has been given by Shephard-Todd in [ST54] : it consists in an infinite series with three
parameters and 34 exceptional groups of small ranks. For more details on these groups, we refer to the
book [LT09].

We denote byW a subgroup of GL(V ) which is a complex reflection group. Note that for real reflection
groups the results of this paper are already interesting (and, most of them, new).

From now on we suppose that W is irreducible of rank n(iv). If (v1, . . . , vn) denotes a basis of V ,
W acts naturally on the polynomial algebra C[V ] = C[v1, . . . , vn]. Chevalley-Shephard-Todd’s theorem
implies that the invariant algebra C[V ]W is again a polynomial algebra, and it can be generated by n
algebraically independent homogeneous polynomials f1, . . . , fn (called the fundamental invariants). The
degrees d1, . . . , dn of these invariants do not depend on the choices for the fi’s (if we require d1 ≤ · · · ≤
dn) and they are called the invariant degrees of W . As for finite Coxeter groups, we will denote by h the
highest degree dn (Coxeter number).

We will also require that W is a well-generated (irreducible) complex reflection group, i.e. , it can be
generated by n reflections(v). Then there exist in W so-called Coxeter elements, which generalize the
usual notion of a Coxeter element in finite Coxeter groups : a Coxeter element c of W is a e2iπ/h-regular
element (in the sense of Springer’s regularity), i.e. , it is such that there exists v ∈ V outside the reflecting
hyperplanes such that cv = e2iπ/hv.

(iii) This is called pseudo-reflection by certain authors.
(iv) That is, the linear action on V is irreducible, and the dimension of V is n.
(v) This is, of course, always verified in the real case.
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2.2 The noncrossing partition lattice of type W

Denote by R the set of all reflections in W . For w in W , let `(w) denote the minimal length of w as a
word on the alphabetR. This is called the reflection length or absolute length(vi).

Definition 3 We denote by 4 the absolute order on W , that is:

u 4 v if and only if `(u) + `(u−1v) = `(v).

If c is a Coxeter element of W , the noncrossing partition lattice of (W, c) is:

NC(W, c) = {w ∈W | w 4 c}.

It is easy to see that the structure of NC(W, c) does not depend(vii) on the choice of the Coxeter ele-
ment c; thus we will just write NC(W ) for short. In the prototypal case of type A, where W = Sn, R
is the set of all transpositions and c is an n-cycle; then NC(W ) is isomorphic to the poset of noncrossing
partitions of an n-gon, as introduced by Kreweras in [Kre72]. In general, the noncrossing partition lattice
of type W has a very rich combinatorial structure, we refer to [Arm09, Ch. 1] or [Rip10a, Chap. 0].

2.3 Multichains in NC(W ) and block factorizations of a Coxeter element
As described in the introduction, Chapoton’s formula expresses the number of multichains in NC(W ).
Here we prefer to work with block factorizations of a Coxeter element, which are directly related to
multichains.

Definition 4 For a Coxeter element c, (w1, . . . , wp) is a block factorization(viii) of c if:

• ∀i, wi ∈W − {1};

• w1 . . . wp = c;

• `(w1) + · · ·+ `(wp) = `(c).

We denote by FACT(c) (resp. FACTp(c)), the set of block factorizations of c (resp. factorizations in p
factors).

Note that the length of c equals the rank ofW (denoted by n), so any block factorization of c determines
a composition of the integer n, by taking the distribution of the lengths of the factors. The set FACTn(c)
is also called the set of reduced decompositions of c into reflections.

If (w1, . . . , wp) is a factorization of c, then we get a (strict) chain in NC(W ):

w1 ≺ w1w2 ≺ · · · ≺ w1 . . . wp = c.

Strict chains are related to multichains by straightforward formulas, so that we can pass from enumeration
of multichains in NC(W ) to enumeration of block factorizations of c, and vice versa (see [Rip10a, App.
B] or [Sta97, Ch. 3.11] for example).

In the following section, we describe a geometric construction of these block factorizations, and how
they are related to the fibers of a topological covering.
(vi) In contrast with the weak length `S , relative to the set S of Coxeter generators, which exists only in the real case.
(vii) Because all the Coxeter elements are conjugated, and the reflection length is invariant under conjugation.
(viii) We will often simply write factorization in the following.
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3 Lyashko-Looijenga covering and factorizations of a Coxeter el-
ement

3.1 Discriminant of a well-generated reflection group and Lyashko-Looijenga
covering

LetW be a well-generated, irreducible complex reflection groupW , with invariant polynomials f1, . . . , fn,
homogeneous of degrees d1 ≤ · · · ≤ dn = h. Note that the quotient space V/W is then isomorphic to Cn:

V/W
∼−→ Cn

v̄ 7→ (f1(v), . . . , fn(v))
.

We recall here the construction of the Lyashko-Looijenga map of type W (see [Bes07, Sec. 5] or
[Rip10c, Sec. 3] for details).

We denote by ∆W the discriminant of W . It is a polynomial in C[V ]W = C[f1, . . . , fn], and it is an
equation of the image of the union of the reflecting hyperplanes in the quotient space V/W . It is known
(see e.g. [Bes07, Thm. 2.4]) that when W is well-generated, the fundamental invariants f1, . . . , fn can be
chosen such that the discriminant of W is a monic polynomial of degree n in fn of the form:

∆W = fnn + a2f
n−2
n + · · ·+ an ,

with ai ∈ C[f1, . . . , fn−1] (see e.g. [Bes07, Thm. 2.4]). Let us denote by H the discriminant hypersur-
face:

H := {v̄ ∈ V/W |∆W (v̄) = 0}.

and define Y := SpecC[f1, . . . , fn−1] ' Cn−1, so that V/W ' Y × C.
The monic property given above implies that if we fix f1, . . . , fn−1, then ∆W always has n roots

(counting multiplicities) in fn. Or, geometrically, that the intersection of the hypersurface H with the
complex line {(y, fn) | fn ∈ C} (for a fixed y ∈ Y ) generically has cardinality n. The definition of the
Lyashko-Looijenga map comes from these observations.

Definition 5 We denote by En be the set of centered configurations of n points in C, that is

En := H0/Sn , where H0 =
{

(x1, . . . , xn) ∈ Cn |
∑
i

xi = 0
}
.

The Lyashko-Looijenga map of type W is:

Y
LL−−→ En

y = (f1, . . . , fn−1) 7→ multiset of roots of ∆W (f1, . . . , fn) in the variable fn.

Remark 6 We can also see LL as an algebraic morphism. Indeed, the natural coordinates for En as an
algebraic variety are the n − 1 elementary symmetric polynomials e2(x1 . . . , xn), . . . , en(x1, . . . , xn).
Thus, the algebraic version of the map LL is simply the morphism

L̂L : Cn−1 → Cn−1

(f1, . . . , fn−1) 7→ (a2(f1, . . . , fn−1) , . . . , an(f1, . . . , fn−1)).
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We denote by Ereg
n the set of configurations in En with n distinct points, and we define the bifurcation

locus of LL, namely K := LL−1(En − Ereg
n ). Equivalently, we have

K := {y ∈ Y | DLL(y) = 0},

where DLL is called the LL-discriminant and is defined as:

DLL := Disc(∆W (y, fn); fn) ∈ C[f1, . . . , fn−1].

The first important property is the following (from [Bes07, Thm. 5.3]):

The restriction of LL : Y −K�Ereg
n is a topological covering of degree

n! hn

|W |
(P0)

3.2 Geometric construction of factorizations
Discriminant stratification

Before explaining the construction of factorizations from the discriminant hypersurface, we recall some
useful properties of the geometric stratification associated to the parabolic subgroups of W .

The space V , together with the hyperplane arrangement A, admits a natural stratification by the flats,
namely, the elements of the intersection lattice L :=

{⋂
H∈BH | B ⊆ A

}
.

As the W -action on V maps a flat to a flat, this stratification gives rise to a quotient stratification L̄ of
W\V :

L̄ = W\L = (p(L))L∈L = (W · L)L∈L ,

where p is the projection V �W\V . For each stratum Λ in L̄, we denote by Λ0 the complement in Λ of
the union of the strata strictly included in Λ. The (Λ0)Λ∈L̄ form an open stratification of W\V , called the
discriminant stratification.

There is a natural bijection between the set of flats in V and the set of parabolic subgroups of W
(Steinberg’s theorem). This leads to a bijection between the stratification L̄ and the set of conjugacy
classes of parabolic subgroups. Moreover, L̄ is in bijection with the set of conjugacy classes of parabolic
Coxeter elements (which are Coxeter elements of parabolic subgroups), and with the set of conjugacy
classes of elements of NC(W ). Through these bijections, the codimension of a stratum Λ corresponds to
the rank of the associated parabolic subgroup and to the length of the parabolic Coxeter element. We refer
to [Rip10c, Sect.6] for details and proofs.

Geometric factorizations and compatibilities

In [Rip10c] we established a way to exhibit factorizations from the geometry of the discriminant hy-
persurfaceH. The starting point is the construction of a map

ρ : H → W
(y, x) 7→ cy,x ,

by the following steps (note that (y, x) lies inH if and only if the multiset LL(y) contains x).

1. Consider a small loop in Cn − H, which always stays in the fiber {(y, t), t ∈ C}, and turns once
around x (but not around any other x′ in LL(y)).
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2. This loop determines an element by,x of π1(Cn − H) = π1(V reg/W ) = B(W ), i.e. , the braid
group of W .

3. Send by,x to cy,x via a fixed surjection B(W )�W .

The details can be found in [Rip10c, Sect. 4]. The construction is adapted from that of Bessis in [Bes07,
Sect. 6]. The map ρ has the following fundamental properties.

(P1) If (x1, . . . , xp) is the ordered support of LL(y) (for the lexicographical order on C ' R2), then the
p-tuple (cy,x1

, . . . , cy,xp
) lies in FACTp(c).

(P2) For all x ∈ LL(y), cy,x is a parabolic Coxeter element; its length is equal to the multiplicity of
x in LL(y), and its conjugacy class corresponds (via the bijection mentioned above) to the unique
stratum Λ in L̄ such that (y, x) ∈ Λ0.

According to property (P1), we call the tuple (cy,x1
, . . . , cy,xp

) (where (x1, . . . , xp) is the ordered
support of LL(y)) the factorization of c associated to y, and we denote it by facto(y).

Any block factorization determines a composition of n. To any configuration of En we can also asso-
ciate a composition of n, formed by the multiplicities of its elements in the lexicographical order. Then
property (P2) implies that for any y in Y , the compositions associated to LL(y) and facto(y) are the same.
The third fundamental property (see [Rip10c, Thm. 5.1] or [Bes07, Thm. 7.9]) is the following.

(P3) The map LL× facto : Y → En× FACT(c) is injective, and its image is the entire set of compatible
pairs (i.e. , pairs with same associated composition).

In other words, for each y ∈ Y , the fiber LL−1(LL(y)) is in bijection (via facto) with the set of
factorizations whose associated composition of n is the same as that associated to facto(y).

4 Combinatorics of the submaximal factorizations
Property (P3) is particularly helpful to compute algebraically certain classes of factorizations. For exam-
ple, if y lies in Y −K, then facto(y) is in FACTn(c) (in other words, it is a reduced decomposition of c),
i.e. the associated composition is (1, 1, . . . , 1). Thus, from (P3), the set of reduced decomposition of c is
in bijection with any generic fiber of LL (the fiber of any point in Ereg

n ), so it has cardinality n!hn/|W |,
because of property (P0). Note that this number has been computed algebraically, using the fact that the
algebraic morphism L̂L is “weighted-homogeneous”.

The natural question is: can we go further, and obtain enumeration of more complicated factorizations,
using the property (P3) and a geometric study of the morphism L̂L? This section gives a positive answer
for the case of submaximal factorizations.

4.1 Restriction of LL and submaximal factorizations of a given type
A submaximal factorization of a Coxeter element c is a block factorization of cwhose underlying partition
of the associated composition is α = 211n−2 ` n. In other words, these are factorizations of c in n − 1
blocks ((n− 2) reflections and one factor of length 2), and as such, they are a natural first generalization
of the set of reduced decompositions FACTn(c).
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Obviously we have to study the restriction of LL to the bifurcation locus K. In fact, it is easier to first
study finer restrictions, because K is not irreducible. Before stating the properties that we obtain, we need
some notations.

Definition 7 We call L̄2 the set of strata of L̄ of codimension 2. Its elements correspond (via the bijection
described earlier) to the conjugacy classes of parabolic Coxeter elements of length 2.

We define ϕ to be the projection:

V/W ' Y × C ϕ−→ Y
(y, x) 7→ y.

Let Λ be a stratum of L̄2. We define:

• FACTΛ
n−1(c): the set of submaximal factorizations of type Λ, i.e. factorizations whose unique factor

of length 2 has a conjugacy class corresponding to Λ.

• Eα := En − Ereg
n .

• E0
α: the subset ofEα consisting of configurations whose partition of multiplicities is α = 211n−2 `

n.

• ϕ(Λ)0 := ϕ(Λ) ∩ LL−1(E0
α).

• K0 = LL−1(E0
α) =

⋃
Λ∈L̄2

ϕ(Λ)0.

• LLΛ: the restriction of LL: ϕ(Λ)
LLΛ−−−→ Eα.

Then, from [Rip10c], we have the following properties.

(i) The irreducible components of K are the ϕ(Λ), for Λ ∈ L̄2.

(ii) The connected components of K0 are the ϕ(Λ)0, for Λ ∈ L̄2.

(iii) The restriction of LL : K0 � E0
α is a (possibly not connected) unramified covering [Rip10c, Thm.

5.2].

(iv) The image, by the map facto, of ϕ(Λ)0 is exactly FACTΛ
n−1(c).

For each Λ, let us denote byDΛ an irreducible polynomial in f1, . . . , fn−1 such thatϕ(Λ) = {DΛ = 0}.
From (i) we obtain a decomposition of the polynomial DLL (the equation of K, see Sec. 3.1):

DLL =
∏

Λ∈L̄2

DrΛ
Λ , for some rΛ ≥ 1.

Using the algebraic property of the restriction LLΛ defined above, we can then obtain the following
results.

Theorem 8 Let Λ be a strata of L̄2. Then:
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(a) LLΛ is a finite quasi-homogeneous morphism of degree (n−2)! hn−1

|W | degDΛ;

(b) the number of submaximal factorizations of c of type Λ is equal to

| FACTΛ
n−1(c)| = (n− 1)! hn−1

|W |
degDΛ .

Proof: (outline) We use the fact that the map LLΛ defined above can be viewed as an algebraic morphism
L̂LΛ, corresponding to the extension

C[a2, . . . , an]/(D) ⊆ C[f1, . . . , fn−1]/(DΛ) .

Then we compute Hilbert series to obtain the degree of this extension.
(b) is a direct consequence of (a) together with Property (P3). The multiplicative factor (n − 1) is

because there are (n− 1) compositions of n whose underlying partition is 211n−2.
2

Remark 9 In [KM10], motivated by the enumerative theory of the generalized non-crossing partitions,
Krattenthaler and Müller defined and computed the decomposition numbers of a Coxeter element, for
all irreducible real reflection groups. In our terminology, these are the numbers of block factorizations
according to the Coxeter type of the factors. Note that the Coxeter type of a parabolic Coxeter element
is the type of its associated parabolic subgroup, in the sense of the classification of finite Coxeter groups.
So the conjugacy class for a parabolic elements is a finer characteristic than the Coxeter type(ix).

Nevertheless, whenW is real(x), most of the results obtained from formula (b) in Thm. 8 are very specific
cases of the computations in [KM10]. But the method of proof is completely different, geometric instead of
combinatorial. Note that another possible way to tackle this problem is to use a recursion, to obtain data
for the group from the data for its parabolic subgroups. A recursion formula (for factorizations where the
rank of each factor is dictated) is indeed given by Reading in [Rea08], but the proof is very specific to the
real case.

For W non-real, formula (b) implies new combinatorial results on the factorizations of a Coxeter el-
ement. The numerical data for all irreducible well-generated complex reflection groups are gathered in
the Table 2 of [Rip10b]. In particular, we obtain (geometrically) general formulas for the submaximal
factorizations of a given type in G(e, e, n).

4.2 Jacobian and discriminant of LL
Now we would like to compute the total number of submaximal factorizations. For this, we need to work
out the sum of the formulas of Thm. 8(b). The problem is that we don’t know explicitly the degrees of
the polynomials DΛ.

We recall that DLL =
∏

Λ∈L̄2
DrΛ

Λ . We use the following theorem to get through it in a uniform way.

(ix) Take for example D4, where there are three conjugacy classes of parabolic elements of type A1 ×A1.
(x) The computation of all decomposition numbers for complex groups, by combinatorial means, is also a work in progress (Krat-

tenthaler, personal communication).
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Theorem 10 Define JLL to be the Jacobian of the morphism L̂L:

JLL = Jac((a2, . . . , an)/(f1, . . . , fn−1) = det

(
∂ai
∂fj

)
2≤i≤n

1≤j≤n−1

.

Then (up to a multiplicative constant):

JLL =
∏

Λ∈L̄2

DrΛ−1
Λ .

The proof involves a detailed study of the polynomial ring extension associated to L̂L. We prove that
the polynomials DΛ correspond to the ramified ideals of this extension, and that the integers rΛ are their
ramification indices. We also interpret them combinatorially, using the covering properties of LL. Then
we deduce that the extension is “well-ramified”, as defined in [Rip10a, Ch. 2], which implies the expected
factorization of the Jacobian. We refer to [Rip10b, Thm. 3.4] for details.

4.3 Enumeration of submaximal factorizations
We deduce easily the computation of the total number of submaximal factorizations.

Corollary 11 Let W be an irreducible, well-generated complex reflection group, with invariant degrees
d1 ≤ · · · ≤ dn = h. Then, the number of submaximal factorizations of a Coxeter element c is equal to:

| FACTn−1(c)| = (n− 1)! hn−1

|W |

(
(n− 1)(n− 2)

2
h+

n−1∑
i=1

di

)
.

Proof: Using Thm. 8(b) and Thm. 10, we obtain:

| FACTn−1(c)| =
∑

Λ∈L̄2

| FACTΛ
n−1(c)|

=
(n− 1)! hn−1

|W |
∑

Λ∈L̄2

degDΛ

=
(n− 1)! hn−1

|W |
(degDLL − deg JLL) ,

As DLL is a classical discriminant with respect to the variable fn of degree h, we have degDLL =
n(n − 1)h. Moreover: deg JLL =

∑n
i=2 deg(ai) −

∑n−1
j=1 deg(fj) =

∑n
i=2 ih −

∑n−1
j=1 dj . A quick

computation allows to conclude. 2

The formula in the above theorem is actually included in Chapoton’s formula: indeed, there exist easy
combinatorial tricks allowing to pass from the numbers of multichains to the numbers of strict chains,
which are roughly the numbers of block factorizations (see [Rip10a, App. B] for details.

However, the proof we obtained here is more satisfactory (and more enlightening) than the one using
Chapoton’s formula. Indeed, if we recapitulate the ingredients of the proof, we only made use of the
formula for the number of reduced decompositions —necessary to prove the first properties of LL in



Submaximal factorizations of a Coxeter element 823

[Bes07]—, the remaining being the geometric properties of LL, for which we never used the classification.
In other words, we travelled from the numerology of FACTn(c) to that of FACTn−1(c), without adding any
case-by-case analysis to the setting of [Bes07].

Yet, the method used here to compute the number of submaximal factorizations is difficult to generalize
to factorizations with fewer blocks. A more promising approach would be to avoid computing explicitely
these factorizations, and to try to understand globally Chapoton’s formula as some ramification formula
for the morphism LL. A reformulation of the formula gives indeed:

∀p ∈ N,
n∑
k=1

(
p+ 1

k

)
| FACTk(c)| =

n∏
i=1

di + ph

di
,

where the | FACTk(c)| are closely related to the cardinalities of the fibers of LL.
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